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Abstract

The article extends Reissner and Sagoci's classical solution to the problem of a rigid circular punch bonded to a

homogeneous, elastic isotropic half-space in which there is an axisymmetrical distribution of buried torsional forces.
The surface of the half-space is free from stresses. The punch undergoes rotation due to the action of the internal
loads. Solution of the problem is obtained by superposing the solutions of two simpler problems, viz the problem of

the elastic half-space without the punch under the action of the prescribed torsional forces and the contact problem
for the half-space with the rigid circular punch bonded to its surface, which is subjected to some tangential
displacement. The form of this tangential displacement is determined from the solution of the ®rst problem. Exact
solutions of both problems are derived by constructing the Green's function, which corresponds to the action of a

unit concentrated force uniformly distributed along a circular ring in the tangential direction. Speci®c examples are
considered. Furthermore, an extension of these results to the case of a transversely isotopic half-space is
presented. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Problems concerning contact between deformable solids are of considerable theoretical and practical
importance, since contact is the commonest way to transmit loads from one structural member to
another. This is why contact mechanics continues to be one of the most important branches of
theoretical elasticity. Signi®cant achievements of both theoretical and computational nature have been
made in this area since the time of Heinrich Hertz. Extensive account of this progress is given by
U¯iand (1965), Galin (1976), De Pater and Kalker (1975), Gladwell (1980), Johnson (1985) and Kikuchi
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and Oden (1988). However in these treatments, it is explicitly assumed that the contact between
deformable solids is achieved by directly loaded punches. But there is another class of contact problems
where the contact between solids is perturbed by forces that are applied in the interior of the medium.
Contact problems of this category have received only limited attention. But they are of considerable
practical interest in many areas, such as geomechanical applications wherein the internal forces can be
visualized as forces transmitted by anchoring regions located in the vicinity of structural foundations
(Selvadurai, 1981). Also, as discussed by Selvadurai (1981), in the particular case where the internal
force migrates to the surface of the half-space, the resulting problem models the interaction between the
existing structural foundation and a surcharge load applied at its vicinity. Recent interest in this class of
problems is due to a number of papers by Selvadurai (1978, 1990) and Fabrikant et al. (1985).

The present article investigates the problem of a rigid circular punch bonded to the surface of a
homogeneous, elastic isotropic half-space loaded internally by torsional forces. The corresponding
problem where contact is achieved by a directly loaded indenter was considered by a number of authors.
The classical results in this area belong to Reissner and Sagoci (1942) who used oblate spheroidal
coordinates to solve the problem. Sneddon (1944, 1951) solved the statical counterpart of the problem
by an approach based on Hankel transforms and dual integral equations. Excellent review of the later
work can be found in U¯iand (1965), De Pater and Kalker (1975), Galin (1976), Gladwell (1980),
Johnson (1985) and Hills et al. (1993). Of the most recent work in this area, mention may be made of
the paper by Hanson and Puja (1997), where an extension to these classical results is given for a
transversely isotropic half-space.

Within the scope of linear elasticity, the solution of the titled problem is found by superposition of
the solutions of two simpler problems. The ®rst problem consists in ®nding the elastic ®eld in the half-
space without the punch under the action of the prescribed internal loading while the second problem
aims at ®nding a corrective solution of the problem of the elastic half-space with the bonded punch in
which the punch is subjected to some tangential displacement. The form of this tangential displacement
is determined from the solution of the unperturbed problem. To solve both problems, we develop a
Green's function, which consists in ®nding the elastic ®eld in the half-space due to the action of a unit
concentrated load uniformly distributed along a circular ring in the tangential direction, in a plane
parallel to the surface of the half-space. The solution of the unperturbed problem is then found by
integrating the Green's function with the prescribed internal loading as the weight over the whole half-
space region. Using the same Green's function, the perturbation problem is then reduced to an integral
equation with the contact stresses under the punch as the unknown quantity. The solution of the
integral equation is obtained in closed form. Speci®c cases of internal loading are considered. It is worth
mentioning in this context that the titled problem for a transversely isotropic half-space was solved by
Selvadurai (1982). However, his solution is restricted to the consideration of the case where the internal
loading is e�ected by a concentrated couple only and it is not clear how to generalize his results. The
author believes that it is, in fact, not possible to adapt his results to generate solution for the case where
the internal loading is e�ected by any arbitrary axisymmetrical distribution of torsional forces. In this
sense, the approach developed in the present article is more general. Speci®c examples are considered to
demonstrate the generality of the present approach.

We begin by introducing the notation that we shall make use of.
We de®ne the Hankel transform of order v�veÿ 1

2� of a function f �r� by the equation (Sneddon,
1972)

ef v�s� � �1
0

rf�r�Jv�rs� dr,

where Jv�rs� is the Bessel function of the ®rst kind and of order v. We write the above relation as
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ef v�s� �Hv�f �r�; r4 s�. The inversion theorem for the Hankel operator states that if ef v�s� is the Hankel
transform of order v of the function f �r�, then

f�r� �
�1
0

sef v�s�Jv�rs� ds,

which should, of course, be written as f �r� �Hv� ~f �s�; s4 r�.
The basic results that we need in the following are (Sneddon, 1972; Gladwell, 1980)

Hv

�
rvÿ1

@

@r

�
r1ÿvf�r�

	
, r4 s

�
� ÿsHvÿ1

�
f�r�; r4 s

�
,

Kv

�
Bvf�r�; r4 s

� � ÿs2Kv

�
f�r�; r4 s

�
,

where the di�erential operator Bv is given by the formula

Bv � d2

dr2
� 1

r

d

dr
ÿ v2

r2
:

2. Formulation of the problem

Consider a cylindrical coordinate system �r, y, z� such that the half-space occupies the region
0E r<1, 0E yE 2p, 0E z<1. Assume that a circular punch of radius a is bonded to the surface of
the half-space such that the contact region is given by the relations 0 E rE a, 0E y E 2p, z � 0. The
contact between the punch and the half-space is perturbed by some torsional forces in the interior of the
half-space, in the plane z � h, which we model by a distribution of body forces T�r, z� acting in the
plane z � h in the tangential direction.

The equilibrium of the medium is governed by the following partial di�erential equation:�
r2 ÿ 1

r2

�
uy � T

m
� 0, �1�

where r2 � @2=@r2 � �1=r��@=@r� � @2=@z2 is the axisymmetric Laplacian, uy�r, z� is the tangential
component of the displacement vector, and m is the shear modulus of the material of the elastic half-
space.

The only non-zero components of the stress tensor are sry and szy which are related to the
displacement component uy by the following equations:

sry � m

�
@uy
@r
ÿ uy

r

�
, szy � m

@uy
@z
: �2�

Under the above assumptions, the problem reduces to that of solving eqn (1) subject to the following
boundary conditions:

uy�r, 0� � 0, 0E r< a,

szy�r, 0� � 0, r > a: �3�
Within the scope of linear elasticity, the solution of the problem can be found by superposing the
solutions of the following two simpler problems:
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Problem 1. (The Unperturbed Problem): It is required to ®nd the solution of the equation

@2uy
@r2
� 1

r

@uy
@r
ÿ uy

r2
� @

2uy
@z2
� ÿT

m
�4�

subject to the following Neumann-type boundary condition:

szy�r, 0� � 0, 0E r<1: �5�
Problem 2. (The Perturbation Problem): We need to ®nd the corrective solution which consists of
®nding the solution of the equation

@2uy
@r2
� 1

r

@uy
@r
ÿ uy

r2
� @

2uy
@z2
� 0 �6�

subject to the following mixed boundary conditions:

uy�r, 0� � ÿf�r�, 0E r< a,

szy�r, 0� � 0, r > a, �7�
where f �r� � u0y�r, 0� where u0y�r, 0� is the solution of the unperturbed problem. Here and in the following
the superscript zero is used to indicate that the quantity belongs to the unperturbed problem.

In addition, solutions of both problems must satisfy the conditions at in®nity to ensure that the elastic
®eld decays as �r2 � z2�1=2 41.

3. Derivation of the Green's function

In order to solve both problems, we construct the Green's function G�r, z; r0, z0� which corresponds to
the tangential displacement, uy�r, z�, of a stress-free half-space which is subjected to the action of a unit
concentrated force uniformly distributed in the tangential direction along a circular ring of radius r0 in
the plane z � z0. Thus, the distribution of body forces equivalent to this case is given by

T�r, z� � 1

2pr
d�rÿ r0 �d�zÿ z0�, �8�

where d�� � �� is the Dirac delta function.
Using the ®rst order Hankel transformation to eqn (1) with (8), we then have the following boundary

value problem:

d2fG1

dz2
ÿ s2 ~G1 � ÿ1

2pm
J1�r0s�d�zÿ z0�,

m
dfG1

dz

�����
z�0
� 0 or

dfG1

dz

�����
z

� 0, fG1�s, z; r0, z0�4 0 as z41: �9�

We note that the solution of the homogeneous form of the eqn (9), is given by

fG1�s, z; r0, z0� � A eÿsz � B esz: �10�
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It is easy to verify that this homogeneous solution satis®es the boundary and regularity conditions, if

and only if fG1�s, z; r0, z0� � 0, which means that the Green's function for the boundary value problem
(9) exists (Tricomi, 1985), for which we formally write

fG1�s, z; r0, z0� �
�
A1 eÿsz � A2 esz, 0 E z< z0
B1 eÿsz � B2 esz, z0 < z<1

�
: �11�

The function ~G1 must be continuous at z � z0. This yields the following equation

�B1 ÿ A1 � eÿsz0 � �B2 ÿ A2� esz0 � 0: �12�
The jump discontinuity of the function @fG1=@z across the plane z � z0 is equal to �ÿ1=2pm�J1�r0s�;

this gives the equation

�B2 ÿ A2 � esz0 ÿ �B1 ÿ A1� eÿsz0 � ÿ1
2pms

J1�r0s�: �13�

Denoting ci � Bi ÿ Ai �i � 1, 2�, we rewrite eqns (12) and (13) in the form:

c1 eÿsz0 � c2 esz0 � 0,

c1 eÿsz0 ÿ c2 esz0 � 1

2pms
J1�r0s�: �14�

Now, using the boundary and regularity conditions [see eqns (9)], we get two more equations, namely,

B2 � 0, A1 � A2: �15�
Solving eqns (14) and (15), we get

A1 � A2 � J1�r0s�
4pms

eÿsz0 , B1 � J1�r0s�
2pms

cosh�sz0�, B2 � 0: �16�

Therefore, the Green's function in the Hankel transform domain is given by the formula

fG1�s, z; r0, z0� � 1

4pms

�
eÿsjzÿz0j � eÿs�z�z0 �

�
J1�r0s�: �17�

Applying Hankel's inverse transformation to eqn (17), we obtain

G�r, z; r0, z0� �
�1
0

sfG1�s, z; r0, z0 �J1�rs� ds: �18�

Putting eqn (17) into eqn (18), we have

G�r, z; r0, z0� � 1

4pm

�1
0

�
eÿsjzÿz0j � eÿs�z�z0 �

�
J1�r0s�J1�rs� ds: �19�

For the product of Bessel functions in eqn (19), we use Neumann's addition theorem (Webster, 1924;
Rahman, 1997):

J1�rs�J1�r0s� � 1

p

�p
0

cos jJ0�Rs� dj, �20�
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where R � �r2 � r20 ÿ 2rr0 cos j�1=2, so that the eqn (19) takes the form

G�r, z; r0, z0� � 1

4p2m

�p
0

cos j
�
S�R, jzÿ z0j� � S�R, z� z0�

�
dj, �21�

where the following notation is introduced:

S�r, z� �
�1
0

eÿszJ0�rs� ds: �22�

Closed-form expression for (22) is obtained from Gradshteyn and Ryzhik (1994) as

S�r, z� � 1

R0
, R0 �

ÿ
r2 � z2

�1=2
: �23�

Thus, the expression for the Green's function (21) reduces to

G�r, z; r0, z0� � 1

4p2m

�p
0

cos j
�

1

R1
� 1

R2

�
dj, �24�

where

R1 � �r2 � r20 � �zÿ z0�2 ÿ 2rr0 cos j�1=2, R2 � �r2 � r20 � �z� z0�2 ÿ 2rr0 cos j�1=2:
Integral (24) is evaluated in closed form (Gradshteyn and Ryzhik, 1994), yielding the following

expression for the Green's function:

G�r, z; r0, z0� � 1

4p2mrr0

�
ÿ l23

l1
P
�
p
2
, p21, p1

�
� r2 � r20 � �zÿ z0�2

l1
K�p1�

ÿ l23
l2
P
�
p
2
, p22, p2

�
� r2 � r20 � �z� z0 �2

l2
K�p2�

�
,

�25�

where K�� � �� and P�� � �� are the complete elliptic integrals of the ®rst and third kinds, respectively, and

l1 � ��r� r0�2��zÿ z0 �2�1=2, l2 � ��r� r0�2��z� z0�2�1=2, l3 � ��rÿ r0 �2��zÿ z0�2�1=2

l4 � ��rÿ r0� � �z� z0�2�1=2, p1 � 2�rr0�1=2
l1

, p2 � 2�rr0�1=2
l2

:

The following relationship holds between P and E (Gradshteyn and Ryzhik, 1994):

P
�
p
2
, p2, p

�
� E�p�

1ÿ p2
, �26�

where E�� � �� is the complete elliptic integral of the second kind.
Substituting into eqn (25), after some simple transformations, we get the following expression for the

Green's function:

G�r, z; r0, z0� � 1

4p2mrr0

X2
j�1

"
r2 � r20 �

�
z� � ÿ 1� jz0

	2
lj

K�pj � ÿ ljE�pj �
#
: �27�
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To the best of our knowledge, the Green's function (27) is new.
Putting z � 0 into eqn (27), we obtain the surface Green's function, namely,

G�r, 0; r0, z0� � 1

2p2mrr0

�
r2 � r20 � z20

l0
K�p� ÿ l0E�p�

�
, �28�

where

l0 �
�
�r� r0�2�z20

�1=2
, p � 2�rr0�1=2

l0
: �29�

4. The solution of the unperturbed problem

With the Green's function (27), it is now straightforward to give the solution of the unperturbed
problem; we have

uy�r, z� � 2p
�1
0

r0 dr0

�1
0

G�r, z; r0, z0�T�r0, z0� dz0: �30�

Integrals in (30) should, of course, be understood in the sense of generalized functions or distributions.
However, in order to solve the perturbation problem, we need expression for uy�r, 0�. Putting z � 0

into eqn (30), we obtain

uy�r, 0� � 1

pmr

�1
0

dr0

�1
0

�
r2 � r20 � z20

l0
K�p� ÿ l0E�p�

�
T�r0, z0� dz0: �31�

Expression (31) allows us to proceed to solve the perturbation problem. However, prior to this, let us
illustrate the use of the formula (31) and some of the results derived in Section 3 by considering some
speci®c examples.

Example 1: Consider the case of a concentrated moment of magnitude T0 acting in the plane z � h in
the anticlockwise direction. The body force distribution equivalent to this case is given by the relation:

T�r, z� � ÿT0

2pr
@d�r�
@r

d�zÿ h�: �32�

Putting eqn (32) into eqn (30), we obtain

uy�r, z� � T0r

8pm

"
1�

r2 � �zÿ h�2
	3=2 � 1�

r2 � �z� h�2
	3=2

#
: �33�

In deriving eqn (33), use has been made of the following property of the Dirac delta function
(Zemanian, 1965):�a

b

f�x� @
@x

d�xÿ x0� dx � ÿf 0�x0�,

and the rules for di�erentiation and some properties of the elliptic integrals of the ®rst and second
kinds.
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The solution corresponding to the case where a concentrated moment acts directly on the surface of
the half-space can be deduced by letting h4 0 in (33), namely,

uy�r, z� � T0r

4pmR3
, R �

ÿ
r2 � z2

�1=2
: �34�

Solution (34) is consistent with LurÂ e (1970) and Chowdhury (1983) obtained by di�erent methods.
The surface displacement of the half-space due to the concentrated moment (32) is obtained by

putting z � 0 into eqn (33), viz

uy�r, 0� � T0r

4pmR3
h

; Rh �
ÿ
r2 � h2

�1=2
: �35�

Example 2: Consider the case where the elastic half-space is subjected to tangential loads varying
linearly with the radius, in the plane z � h, i.e.

T�r, z� � t
r

a
H�aÿ r�d�zÿ h�, �36�

where H�zÿ r� is the Heaviside step function.
Putting the expression (36) into eqn (31), we obtain

uy�r, 0� � t
pmar

�a
0

r0

"
r2 � r20 � �zÿ h�2

lh
K�ph� ÿ lhE�ph�

#
dr0, �37�

where

lh �
�
�r� r0�2� h2

�1=2
, ph � 2�rr0 �1=2

lh
: �38�

Similar expressions can be found for any axisymmetrical distribution of internal forces in the half-
space.

5. The corrective solution

The surface Green's function (28) allows an elegant formulation of the perturbation problem, i.e. to
®nd the corrective solution. In particular, we note that the surface displacement of the half-space due to
an arbitrary distribution of shearing stresses szy�r, 0� � t�r� on the half-space over a circular region of
radius a can be obtained by putting T�r, z� � ÿt�r�d�z� into eqn (31) with the result

uy�r, 0� � ÿ1pmr

�a
0

�
r2 � r20
r� r0

K�q� ÿ �r� r0�E�q�
�
t�r0 � dr0, �39�

where q � 2�rr0�1=2=�r� r0�.
So, using the ®rst of the boundary conditions in eqn (7) and eqn (39), we observe that the

perturbation problem can be reduced to the following integral equation for the unknown contact
stresses t�r�:�a

0

�
r2 � r20
r� r0

K�q� ÿ �r� r0�E�q�
�
t�r0� dr0 � pmrf�r�, 0E r< a: �40�
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We now develop a method to solve the integral eqn (40), which is based on reducing it to an Abel
integral equation using some properties of the complete elliptic integrals of the ®rst and second kinds.

We rewrite eqn (40) in the following form:�r
0

"
r
�
1� ÿr20=r2�	
1� �r0=r� K

�
2�r0=r�1=2
1� �r0=r�

�
ÿ r

�
1� r0

r

�
E

�
2�r0=r�1=2
1� �r0=r�

�#
t�r0� dr0

�
�a
r

"
r0
�
1� ÿr2=r20�	
1� �r=r0� K

�
2�r=r0�1=2
1� �r=r0�

�
ÿ r0

�
1� r

r0

�
E

�
2�r=r0�1=2
1� �r=r0 �

�#
t�r0� dr0 � pmrf �r�:

�41�

Using Landen transformations for the complete elliptic integrals of the ®rst and second kinds
(Gradshteyn and Ryzhik, 1994), it can be shown that the following relations hold:

1

1� k
K

�
2k1=2

1� k

�
� K�k�; �1� k�E

�
2k1=2

1� k

�
� 2E�k� ÿ �1ÿ k2�K�k�: �42�

In view of the relations (42), eqn (41) takes the form�r
0

"
r

�
1� r20

r2

�
K

�
r0
r

�
ÿ 2rE

�
r0
r

�
� r2 ÿ r20

r
K

�
r0
r

�#
t�r0� dr0

�
�a
r

"
r0

 
1� r2

r20

!
K

�
r

r0

�
ÿ 2r0E

�
r

r0

�
� r20 ÿ r2

r0
K

�
r

r0

�#
t�r0� dr0 � pmrf �r�:

�43�

We further transform eqn (43) using the following integral representations for the complete elliptic
integrals (Gradshteyn and Ryzhik, 1994):

K

�
r0
r

�
� r

�r0
0

dsÿ
r20 ÿ s2

�1=2�r2 ÿ s2�1=2
; E

�
r0
r

�
� 1

r

�r0
0

 
r2 ÿ s2

r20 ÿ s2

!1=2

ds: �44�

Expressions for K�r=r0� and E�r=r0� can be obtained by interchanging the positions of r and r0 in eqns
(44).

Putting (44) into eqn (43), after some simple manipulations, we obtain�r
0

t�r0� dr0

�r0
0

s2

�r2 ÿ s2�1=2ÿr20 ÿ s2
�1=2 ds�

�a
r

t�r0 � dr0
�r
0

s2

�r2 ÿ s2�1=2ÿr20 ÿ s2
�1=2 ds � pm

2
rf �r�: �45�

The expression on the left can be represented as a double integral over the trapezoid bounded by the
lines s � 0, s � r0, s � r and r0 � a. Changing the order of integration in this integral, we obtain

2

p

�r
0

s2

�r2 ÿ s2 �1=2
ds

�a
s

t�r0 �ÿ
r20 ÿ s2

�1=2 dr0 � mrf�r�: �46�

If we write�a
s

t�r0�ÿ
r20 ÿ s2

�1=2 dr0 � c�s�
s2

, 0E sE a, �47�
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then eqn (46) reduces to SchloÈ milch integral equation

2

p

�r
0

c�s�
�r2 ÿ s2 �1=2

ds � mrf �r�, 0E rE a, �48�

whose solution is (Lebedev et al., 1965; Tricomi, 1985)

c�s� � m
d

ds

�s
0

t2f�t�
�s2 ÿ t2�1=2

dt: �49�

On the other hand, the integral eqn (47) is that of Abel, whose solution is given by the formula
(Lebedev et al., 1965; Tricomi, 1985)

t�r� � ÿ2
p

d

dr

�a
r

c�s� ds

s�s2 ÿ r2 �1=2
: �50�

Eqns (49) and (50) give the contact stresses under the punch, thus formally completing the solution of
the titled problem.

We now ®nd the asymptotic behaviour of the contact stresses t�r� in the sense of Erdelyi as the punch
edge is approached �r4 aÿ�, that is to ®nd the ®rst term in the asymptotic expansions of the expression
(50) as r4 aÿ; we ®nd that

t�r�1
�
2

a

�1=2 c�a�
p�aÿ r�1=2 �

�
2

a

�1=2 m

pa�aÿ r�1=2
d

da

�a
0

t2f�t�dt
�a2 ÿ t2�1=2

as r4 aÿ: �51�

We observe that the contact stresses under the punch exhibit square root singularity as the punch edge
is approached. The stress intensity factor K near the rim of the punch is given by the expression

K � lim
r4aÿ
�aÿ r�1=2

�
s0zy�r, 0�j0Er<a � t�r�

� � lim
r4aÿ
�aÿ r�1=2t�r� �

�
2

a

�1=2 m
pa

d

da

�a
0

t2f�t� dt

�a2 ÿ t2�1=2
: �52�

Formula (52) allows us to ®nd the stress intensity factor near the rim of the stamp for any arbitrary
axisymmetric buried torsional force acting inside an isotropic elastic half-space, which can be used, in
conjunction with a failure criterion, to determine the condition of crack initiation and crack propagation
near the edge of the punch.

We now turn to determine the integral characteristic of the problem. The total moment necessary to
oppose the rotation of the punch is

M � ÿ2p
�a
0

r2
�
s0zy�r, 0�j0Er<a � t�r�

�
dr � ÿ2p

�a
0

r2t�r� dr: �53�

Putting (50) into eqn (53), we obtain

M � 4

�a
0

r2

"
d

dr

�a
r

c�s� ds

s�s2 ÿ r2 �1=2
#

dr � ÿ8
�a
0

c�s� ds � ÿ8m
�a
0

t2f�t� dt

�a2 ÿ t2�1=2
: �54�

We now proceed to consider some speci®c cases of buried torsional loading.
Example 1: Consider the case where the bonded contact is perturbed by a concentrated moment of

magnitude T0 acting in the plane z � h in the anticlockwise direction. In this case, the function f �r� is
given by the expression (35). Substituting into (54), we obtain
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M � ÿ2T0p
3

p

�p=2
0

sin3 y dyÿ
1� p2 sin2 y

�3=2 � 2T0p
2

p
dI�p�

dp
, �55�

where p � 1=H, H � h=a and

I�p� �
�p=2
0

sin y dyÿ
1� p2 sin2 y

�1=2 : �56�

Closed-form expression for the integral (56) is found in Gradshteyn and Ryzhik (1994) as

I�p� � tanÿ1p
p

: �57�

Insertion of (57) into (55) then yields

M � 2T0

p

�
H

1�H 2
ÿ tanÿ1

1

H

�
: �58�

Example 2: Consider the case where the bonded contact is disturbed by a concentrated force P
uniformly distributed along a circular ring of radius b in the tangential direction in the anticlockwise
orientation. In this case,

T�r, z� � P

2pr
d�rÿ b�d�zÿ h�: �59�

Putting (59) into (31), we obtain

f�r� � PG�r, 0; b, h� � P

2p2mrb

�
r2 � b2 � h2

lb
K�pb � ÿ lbE�pb�

�
, �60�

where

lb �
�
�r� b�2�h2

�1=2
, pb � 2�rb�1=2

lb
:

Putting (60) into (54), we obtain

M � ÿ4Pa
p2B

�p=2
0

sin y

�
sin2 y� B2 �H 2

G
K�O� ÿ GE�O�

�
dy, �61�

where B � b=a and

G �
�
�sin y� B�2�H 2

�1=2
, O � 2�B sin y�1=2

G
:

Example 3: Consider the case where the elastic half-space is subjected to tangential loads t varying
linearly with the radius of the punch, in the plane z � h, the direction of the load being in the
anticlockwise direction. In this case, the function f �r� is given by eqn (37), which upon substitution into
(54) yields
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M � ÿ8ta
3

p

�p=2
0

sin y dy
�1
0

x

"
sin2 y� x2 �H 2

~G
K
ÿ

~O
�
ÿ ~GE

ÿ
~O
�#

dx, �62�

where

~G �
�
�sin y� x�2�H 2

�1=2
, ~O � 2�x sin y�1=2

~G
:

Expressions similar to eqns (58), (61) and (62) can be derived for any axisymmetrical distribution of
buried torsional forces and the prowess of the present approach lies in this generality.

6. Generalizations to transversely isotropic solids

The results obtained in Section 5 can be easily extended to the case where the half-space is made up
of a transversely isotropic material. The equation of equilibrium governing the pure torsion of a
transversely isotropic material is given by (Kassir and Sih, 1975)�

c11 ÿ c12
2

��
@2uy
@r2
� 1

r

@uy
@r
ÿ uy

r2

�
� c44

@2uy
@z2
� T � 0, �63�

where c11, c12 and c44 are three of the ®ve independent elastic constants of the transversely isotropic
material. Numerical values of these constants for some transversely isotropic materials are given in
(Kassir and Sih, 1975).

The non-zero components of the stress tensor are related to the tangential displacement component by
the equations:

szy � c44
@uy
@z

, syr �
�
c11 ÿ c12

2

��
@uy
@r
ÿ uy

r

�
: �64�

Equation (63) can be rewritten as

@2uy
@r2
� 1

r

@uy
@r
ÿ uy

r2
� @

2uy

@z21
� T

m�
� 0, �65�

where

z1 � Lz, m� � c11 ÿ c12
2

, L �
�
m�

c44

�1=2

: �66�

We observe that with the scaling factors (66), eqn (65) exactly resembles eqn (1) and hence solution for
this case would be similar to what is presented in Sections 3, 4 and 5. Therefore, without repeating the
same solution procedure, we simply list the key results:

G�r, z; r0, z0� � 1

4p2rr0b

X2
j�1

"
r2 � r20 � L2

�
z� � ÿ 1� jz0

	2
lj

K�sj � ÿ ljE�sj �
#
, �67�

where
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b � m�L, l1 �
h
�r� r0�2�L2�zÿ z0 �2

i1=2
,

l2 �
�
�r� r0 �2�L2�z� z0�2

�1=2
, sj � 2�rr0 �1=2

lj
: �68�

The result corresponding to eqn (33) assumes the form:

uy�r, z� � T0r

4pb

"
1�

r2 � L2�zÿ h�2
	3=2 � 1�

r2 � L2�z� h�2
	3=2

#
: �69�

Eqn (69) gives the displacement ®eld in a transversely isotropic half-space caused by the action of a
concentrated moment in its interior in the plane z � h, the direction of the moment being anticlockwise.

Expression for the moment M can be obtained by replacing m by b. The results corresponding to eqns
(58), (61) and (62) can be deduced by simply replacing H by LH.

7. Closure

In the present article, we have presented an extension of Reissner±Sagoci's classical solution to the
problem of bonded contact of a rigid circular punch with a homogeneous, elastic isotropic half-space,
which is under any arbitrary axisymmetrical distribution of buried torsional forces. Speci®c examples
have been considered. Furthermore, generalizations of these results have been given for a transversely
isotropic half-space. The method of solution developed here can be adapted to the investigation of other
mathematically similar mixed boundary value problems of elasticity.
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